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Abstract—Circular dependendcy is a phenomenon that can 

occur in many different contexts. Of course, while it’s desirable 

to prevent them from occuring in the first place, there should also 

be a technique to resolve them once they have been created. This 

paper demonstrates the use of a simple technique in which we 

can resolve (yet not necessarily optimize) all  circular 

dependencies that exist within a system, given that we have 

defined all of the dependencies. 
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I.  INTRODUCTION  

The term circular dependency itself is often used in the 
context of software engineering, as seen in [1] and [2]. 
Examples include module imports or class dependencies. 
However, it can perhaps also be used as an umbrella term, 
which includes all conflicts that can be described as “two or 
more things that depend on each other to function”. For 
instance, it can happen in scheduling schemas or prerequisites. 
These are also systems which require careful design, as one 
may accidentally create a loop of dependencies if too many 
constraints are defined. Here, I will define a dependency “A 
depends on B” as “the object A requires that object B is defined 
before it itself can be defined”. And thus a circular dependency 
is defined as a situation where “a group of objects can not be 
defined as they are dependent of each other.” 

To prevent them from happening in the first place would be 
ideal. But what if the problem arises anyway? Perhaps it is 
better to redesign the system as a whole so as to create a brand 
new schema which is cleaner. However, if we have a large 
enough system, this may not be such a trivial task and 
designing a new algorithm to generate a better dependency 
chain might take time. It may also be the case that a simple 
hotfix is required immediately, and we are not required to 
refactor the system at all. 

In any case, this paper demonstrates the use of a greedy 
technique which attempts to resolve the circular dependency (if 
present) in a system of dependencies, by selecting and 
removing as little dependencies as possible. Of course, this 
may not be desirable, as some dependencies may be crucial. 
However, the results of this algorithm will allow the user to 
identify what few dependencies can be modified in order to 
quickly resolve the issue. 

II. THEORETICAL BASIS 

A. Using Graphs and Cycles to Model Dependencies 

A graph consists of vertices (also often called nodes) and 
edges. In this paper, the variable V will denote the number of 
nodes in a graph, and the variable E will denote the number of 
edges. The vertices may be arbitrarily labeled, for instance 
using integers. For example, the following graph consists of 5 
nodes and 7 edges: 

 

Fig. 1. Example Graph 1 (copied from [3]) 

A path leads from node a to node b through edges of the graph. 
The length of a path is the number of edges in it. For example, 
the above graph contains a path 1 → 3 → 4 → 5 of length 3 
from node 1 to node 5: 

 

Fig. 2. Example of a path in a graph (copied from [3]) 

A path is a cycle if the first and last node is the same. For 
example, the above graph contains a cycle 1 →3 →4 →1. 

Regarding connectivity, a graph is said to be connected if 
there is a path between any two nodes. For example, the 
following graph is connected. 
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Fig. 3. Example of a connected graph (copied from [3]) 

The following graph is not connected, because it is not possible 
to get from node 4 to any other node: 

 

Fig. 4. Example of a disconnected graph (copied from [3]) 

The connected parts of a graph are called its components. For 
example, the following graph contains three components: {1, 2, 
3}, {4, 5, 6, 7} and {8}. 

 

Fig. 5. Example of graph components (copied from [3]) 

Regarding directions, a graph may have directed vertices, 
and thus considered to be a directed graph. A directed graph is 
one whose edges may only be traversed in one direction. The 
graph below is an example. To further clarify, one may traverse 
from 3 → 1, but not vice versa. 

 

Fig. 6. Example of a directed graph (copied from [3]) 

We can now model a set of objects and depedencies as a 
directed graph: the nodes will represent the objects or events, 
and the vertices shall represent the dependencies. A vertex 
from node a to node b means that object b depends on object a. 
These are also referred to as predecessors and successors, 
respectively (though these terms are more often used for 
prerequisite based problems, here the meanings are analogous 
and thus I will be using these terms). 

I now bring attention to the importance of cycles in this 
context. If we are given a dependency chain model in the form 
of a directed graph, a cycle in the graph implies that there 
exists a circular dependency. It is clear that if a cycle exists, 
we can traverse a particular node in the graph back to itself. 
This leads to a loop in dependencies and thus needs to be 
resolved. 

Resolving this conflict can perhaps be done in a few ways. 
One way, as mentioned earlier, is to redefining the objects and 
dependencies such that a new system is created entirely. Here, 
however, a much simpler way is to delete dependencies. Again, 
this may not be ideal given the circumstances, but it’s an option 
nonetheless. Hence, the problem can be reduced to: What set 
of edges in the graph can we remove such that we eliminate 
the cycle but also remove as little as possible?  

B. Kahn’s Algorithm and Topological Sorting 

Now that we have defined the representation of a directed 
graph for a set of objects and dependencies, as well as the task 
of finding the smallest set of edges to remove from the graph, 
it’s time to breakdown the task into smaller subtasks. 

First and foremost, we should detect whether or not a cycle 
actually exists, because if it doesn’t, then there is no problem. 
This is achievable through many ways and is a task that has 
been covered in detail by hundreds of articles. One such way is 
by attempting to do a typological sort of the vertices. A 
typological sort is one where the vertices are validly ordered 
according to their succession. In this case, a vertex A has to 
appear after B if A (directly or indirectly) depends on B.  

More formally, a topologically sorted ordering is an 
ordering of the nodes of a directed graph such that if there is a 
path from node A to node B, then node A appears before node B 
in the ordering. For example, for the graph: 

 

Fig. 7. Example of a directed graph 2 (copied from [3]) 

one topological sort is [4, 1, 5, 2, 3, 6]: 

 

Fig. 8. Example of a topological sort (copied from [3]) 

A topological sort will not exist for a graph that contains 
cycles, as it will have at least two nodes that will 
simultaneously require to come before and after each other. For 
example: 
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Fig. 9. Example of a cyckic graph (copied from [3]) 

In this graph, 3 has to appear before 5, yet 5 has to appear 
before 2 which implies 5 has to appear before 3 as well, which 
is a contradiction. It is thus concluded that a topological sort is 
not possible. 

Kahn’s algorithm is one that can detect a cycle in linear 
O(|V| + |E|) time. It works by repeatedly finding vertices with 
no incoming edges (also referred to as in-degrees or 
predecessors), removing them from the graph, and updating 
the incoming edges of the remaining vertices. This process 
continues until all the vertices have been ordered. It is also 
important to note that disconnected components are 
independent of eachother and thus can be ordered arbitrarily (as 
long as each of them are themselves orederd). The following is 
a rough step by step of Kahn’s algorithm. 

1. Add all nodes with in-degree 0 to a queue. 

2. If the queue is empty, stop. 

3. Otherwise, pop a node from the queue. 

4. For each outgoing edge from the removed node, i.e. it’s 
successors, decrement the in-degree of the successor 
node by 1. 

5. If the in-degree of a successor node becomes 0, add it to 
the queue and remove it from the graph. 

6. If the queue is empty and there are still nodes in the 
graph, the graph contains a cycle and cannot be 
topologically sorted. 

7. Otherwise, repeat from step 2. 

8. The nodes in the queue represent the topological 
ordering of the graph. 

C. Modifying Kahn’s Algorithm to Remove Dependencies 

As seen from the previous subsection, Kahn’s algorithm is 
capable of detecting a cycle in the graph (step 6). The 
algorithm stops because it realizes it isn’t possible to achieve 
it’s goal. That being said, because our goal is to remove some 
set of edges that cause the cycle, in our end result, we will 
eventually have a combination of dependencies that do have a 
topological sort. Hence, we can simply continue the algorithm 
by removing some edges until an in-degree of a node becomes 
zero. We are essentially forcing a topological ordering to be 
possible. 

This poses the important question: which of the 
edges/dependencies do we remove such that the algorithm 
can continue and we remove as few as possible? We can 
greedily select the node with the least in-degrees, and remove 

all of it’s dependencies. Intuitively, this is optimal, because for 
all nodes that have larger in-degrees, we will need to erase 
more dependencies. However, the formal proof is left as an 
exercise to the reader. 

The new algorithm now obliges us to keep track of all 
nodes in the queue, regardless of their in-degrees. Since we 
want to be able to remove the dependencies of the node with 
the least in-degrees, we will keep the queue sorted in ascending 
order by each node’s in-degree count. As a result, this new 
algorithm will have a time complexity upperbounded by O(|V| 
+ |E| log |V + E|) The steps for it is as follows (steps 1-4 
exactly the same as Kahn’s): 

1. Maintain two sets for each node: a successor set and a 
predecessor set. The in-degree of a node can now be 
inferred from the size of the predecessor set of this 
node. 

2. Add all nodes to a priority-based queue, with the in-
degrees of each node as the priority. 

3. If the queue is empty, stop. 

4. Otherwise, pop a node from the queue. 

5. If the node priority (which is it’s predecessor count 
when it was enqueued) is not the same as it’s current 
predecessor count, repeat from step 3. We will ignore 
this node as it was modified some time after we last 
enqueued it. 

6. If the predecessor count of this node is not 0, remove all 
of it’s predecessors. This entails removing the edge 
from the relevant predecessor and successor sets. 

7. For each outgoing edge from the removed node, i.e. for 
all nodes in it’s successor set, remove the corresponding 
edge from both the successor set of this node the and 
predecessor set of the successor node. Enqueue this 
node with priority size(successor set) - 1. 

8. Repeat from step 2. 

9. The nodes in the queue represent the topological 
ordering of the graph. 

III. TWO CASES 

A. Example One: An Illustration 

Below is a basic example graph to illustrate Kahn’s as well 

as the new algorithm.  

 

 
Fig. 10. Example of a graph of dependencies 
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For Kahn’s algorithm, we will first calculate the in-degrees of 
each node. 

Node 1 2 3 4 

In-degrees 0 2 2 1 

 

Since 1 is the only node with zero in-degrees, we initialize the 
queue as {1}. We then pop 1 and decrement the in-degree of 
each successor node of 1. 

Node 1 (popped) 2 3 4 

In-degrees 0 1 1 1 

 

No new nodes with 0 in-degrees have been found, and no 
nodes with 0 in-degrees haven’t been popped from the queue. 
Thus, the algorithm ends and we conclude that a topological 
sort is not possible. 

 In the new algorithm, we shall maintain the predecessor and 
successor sets, as mentioned before. 

Node 1 2 3 4 

Predecessors - 1, 3 1, 4 2 

Successors 2, 3 4 2 3 

 

Below is a table that illustrates the process of the algorithm 
(the number in brackets in the priority queue column represents 
the priority of the queue element). 

Iteration 0 Popped Node Priority Queue 

 - 1 (0), 3 (1), 4 (1), 2 (2) 

Node 1 2 3 4 

Predecessors - 1, 3 1, 4 2 

Successors 2, 3 4 2 3 

Explanation: this is the intialization step. 

 

Iteration 1 Popped Node Priority Queue 

 1 2 (1) 3 (1), 3(1), 4 (1), 2 (2) 

Node 1 2 3 4 

Predecessors - 3 4 2 

Successors - 4 2 3 

Explanation: 1 is popped.  

1. First check that it’s priority is the same as it’s current 
predecessor count (this is true).  

2. Next, since the predecessor count is 0, we can skip step 6. 
Now, 1’s successors are removed and enqueued with the 
new predecessor count as the priority. 

Iteration 2 Popped Node Priority Queue 

 2 4 (0), 3(1), 3(1), 4 (1), 2 (2) 

Node 1 2 3 4 

Predecessors - - 4 - 

Successors - - - 3 

Explanation: 2 is popped.  

1. First check that it’s priority is the same as it’s current 
predecessor count (this is true).  

2. Next, since the predecessor count is not 0, we first need 
to remove all of it’s dependencies first. Remove 3 from 
2’s predecessors and remove 2 from 3’s successors.  

3. Finally, we enqueue 2’s successors. The node 4 is 
enqueued with priority 0. 

Iteration 3 Popped Node Priority Queue 

 4 3 (0), 3(1), 3(1), 4 (1), 2 (2) 

Node 1 2 3 4 

Predecessors - - - - 

Successors - - - - 

Explanation: 4 is popped.  

1. First check that it’s priority is the same as it’s current 
predecessor count (this is true).  

2. Next, since the predecessor count is not 0, we first need 
to remove all of it’s dependencies first. Remove 4 from 
3’s predecessors and remove 3 from 4’s successors.  

3. Finally, we enqueue 4’s successors. The node 3 is 
enqueued with priority 0. 

Iteration 4 Popped Node Priority Queue 

 3 3(1), 3(1), 4 (1), 2 (2) 

Node 1 2 3 4 

Predecessors - - - - 

Successors - - - - 

Explanation: 3 is popped.  

1. First check that it’s priority is the same as it’s current 
predecessor count (this is true).  

2. Next, this node no longer has any successors or 
predecessors. Thus, we don’t need to do anything. 

Iteration  

5-8 

Popped Node Priority Queue 

 - - 

Node 1 2 3 4 

Predecessors - - - - 

Successors - - - - 
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Explanation:  

1. Before iteration 5, all nodes in the queue have invalid 
priorities. This is because at this point, all the 
predecessors are 0. 

2. Thus, for each iteration 5 until 8, all we’re doing is just 
popping the queue and ignoring the popped node. 

3. We reach an empty queue, and thus have completed the 
algorithm  

 

The result of the algorithm is as follows: 

1. We have removed the 3 → 2 edge in iteration 2. This 
means we have erased the dependency “2 depends on 
3”. 

2. After removing that dependency (and none others), 
we were able to topologically sort the graphs vertices. 

3. This implies that removing the 3 → 2 edge is enough 
to resolve the circular dependency in this graph. 

4. Additionally, we have obtained a topological ordering 
of the vertices, which is the order of the popped 
nodes: 1 → 2 → 4 → 3. 

B. Example Two: A Case Study 

We now move on to a second, more elaborate example. 

Say we have a software project in which the classes are 

interdependent. An example of this is a university 

management system comprising several classes: Professor, 

Course, Student, Department, Schedule, Room, Faculty, and 

University. Each class depends on others to model the 

complex interactions within the university. It is crucial to 

ensure that the class schema avoids circular dependencies 

which could pose an issue during compilation. Below is a 

table of example dependencies this system could have. 

 

Class Depends On 

Professor Department, Faculty 

Course Department 

Student Department 

Faculty - 

Schedule Course, Room 

Room - 

Department Proffesor, Faculty 

University Proffesor, Course, Student, Department, 

Schedule, Room, Faculty 

 
The result of applying the algorithm to this set of dependencies 
is as follows: 

1. The removed dependencies are “Course depends on 
Department” and “Department depends on Professor” 

2. By removing these two dependencies (and none others), we 
have obtained the system with resolved circular 
dependencies by removing as few dependencies as possible. 

3. Additionally, we have obtained a topological ordering of 
the classes: Faculty → Room → Course → Schedule → 
Department → Proffesor → Student → University 

Class Revised Dependencies 

Professor Department, Faculty 

Course - 

Student Department 

Faculty - 

Schedule Course, Room 

Room - 

Department Faculty 

University Proffesor, Course, Student, Department, 

Schedule, Room, Faculty 

 

IV. IMPLEMENTATION 

I have implemented the algorithm in Python. However, 

first the algorithm should read input from a file input.txt 

which has the following format: 

 

1. The first line contains the names of all objects 

seperated by a space 

2. Then for each every lines after that: the first line is 

empty, the second line is an object A, and the third line 

is a list of all objects that depend on A 

3. Below is an example of the file that describes the 

second example in section III. 

 
Proffesor Course Student Department Schedule Room 

Faculty University 

 

Proffesor 

Department Faculty 

 

Student 

Department 

 

Department 

Proffesor Faculty 

 

Schedule 

Course Room 

 

Course 

Department 

 

University 

Proffesor Course Student Department Schedule Room 

Faculty 

 

Below is the algorithm to process the input file: 
 

succs_list = dict() 

preds_list = dict() 

 

 

""" Input """ 

with open("input.txt", "r") as f : 

     

    # Helper function 

    def get() : 

        return list(f.readline().strip().split()) 
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    # Initialize the successor list and predecessor 

list for each node 

    nodes = get() 

    for node in nodes : 

        succs_list[node] = set() 

        preds_list[node] = set() 

 

    # Read each line describing the predecessor of 

the node 

    while True: 

         

        if not f.readline() : break 

 

        successor = get()[0] 

        predecessors = get() 

 

        for pred in predecessors : 

            succs_list[pred].add(successor) 

            preds_list[successor].add(pred) 

 

 

And below is the code for the implementation of the 

algorithm: 
 

""" Process the graph """ 

 

from heapq import heapify, heappush, heappop 

 

seq = [] 

erased = [] 

 

pq = [(len(preds_list[node]), node)  

      for node in preds_list] 

heapify(pq) 

 

while pq: 

     

    pred_count, node = heappop(pq) 

 

    if pred_count != len(preds_list[node]) : 

        continue 

     

    if len(preds_list[node]) != 0 : 

        for pred in preds_list[node] : 

            erased.append((pred, node)) 

            succs_list[pred].remove(node) 

        preds_list[node] = set() 

 

    for suc in succs_list[node] : 

        preds_list[suc].remove(node) 

        heappush(pq, (len(preds_list[suc]), suc)) 

     

    seq.append(node) 

 

print(" → ".join(seq)) 

print(erased) 

 

 

V. CONCLUSION 

In this paper, I have demonstrated a simple technique to 

resolve circular dependencies by. First, the objects and 

dependencies are modelled as a directed graph. Then, Kahn’s 

algorithm is modified to select and remove the edges of the 

graph that are causing a cycle, thus removing the circular 

dependency. The output of this algorithm is then the 

dependencies it has removed as well as the topological order 

of the objects after the removal. 

The algorithm is optimal in the sense that the amount of 

dependencies that are removed is as few as possible. However, 

in a large system of interconnected dependencies, it may not 

be desirable to remove certain dependencies. Which is why, 

the algorithm should only be considered as a temporary 

solution, and the dependencies should eventually be properly 

resolved by design. 
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